Di- γ Transverse Momentum in H-> $\gamma\gamma$ Analysis

Y.Q.Fang, K.Loureiro, <u>B.Mellado</u> and Sau Lan Wu University of Wisconsin

Higgs WG meeting 22/01/04

Outline

- **Introduction**
- Transverse momentum in Signal
 - >MC@NLO
- Transverse momentum for irreducible background
 - > ResBos
- Transverse momentum for reducible backgrounds
- **Conclusions:** Strategy for H->γγ analysis
 - >Inclusive versus H+jets analyses

Introduction

- ▶ Publicity plots report on inclusive $H->\gamma\gamma$ analysis only
 - \succ Used only $\gamma\gamma$ invariant mass as discriminating variable
 - \Rightarrow Di- γ transverse momentum may also be used
 - Need to look into a more global analysis like the one performed for H->ZZ->41
 - > Results from H+1 jet and H+2 jet analyses have not been included
 - Need to establish combination procedure: avoid double counting and take into account correlated systematic errors
 - Need to apply QCD higher order corrections and resummation effects, wherever available for both signal and background

Introduction (cont)

A lot of progress is available or is underway

- > Know impact of new detector layout (F. Tartareli et al.)
- →QCD higher order corrections are available for inclusive and H+1jet analyses for both signal and background (see G.Unal for overview).
- Re-summation (+QCD higher order corrections) are available for a number of processes: some of these are implemented in MC's, some may be incorporated "by hand' (M.Escalier/Wisconsin)
- > We understand the impact of H+jets analyses (Zmushko/Japan/Wisconsin)
- Re-evaluation of reducible backgrounds is underway (M.Wielers/Orsay/Wisconsin)
- > Combination tools for LHC are available (F. Cerutti/Wisconsin)

Signal

VBF

Signal (cont)

#MC@NLO (matrix elements matched to standard parton shower) agrees very well with analytical calculation (matrix elements and re-summed terms merged analytically)

Signal (cont)

♣PYTHIA gives a significantly softer spectrum compared to MC@NLO and analytical calculation

material of the second of the

- Real $\gamma\gamma$ production ($qq-\gamma\gamma$) and $gg-\gamma\gamma$) is known to NLO. However, it has not jet been implemented in MC@NLO (may be done in the future, though)
- We have LO matrix elements interfaced with parton shower (Pythia, Herwig)
- Semi-inclusive MC (not an event generator) with NLO matrix elements matched to soft/collinear gluon resummation: ResBos
 - Since it is not an event generator we need to come up with some practical solution. The most obvious one is to study the perspectives of re-weighting Pythia

ResBos

 $\clubsuit \text{Di-}\gamma$ deppends somehow on cuts on $P_{T\gamma}$ and is almost insensitive to $\Delta R_{\gamma\gamma}$ separation

hoP_{Tyy} and P_{Ty} correlation drops with increasing P_{Ty}

ResBos vs. Pythia

P_{Tγγ}: Resbos is compared with nominal Pythia and Pythia with MSTP(68)=2

Symmetric cuts

· Pythia (Nominal)

Pythia (MSTP(68)=2)

ResBos vs. Pythia

My: Resbos is compared with nominal Pythia and Pythia with MSTP(68)=2

Symmetric cuts

ResBos

Pythia (Nominal)

Pythia (MSTP(68)=2)

Asymmetric cuts

P_T for reducible backgrounds

- \bot Impact of reducible backgrounds (γ j, jj) depends strongly on our ability to perform γ /jet separation (obvious). With present estimates reducible backgrounds are by far not negligible
 - > May attempt to separate quark from gluon jets (see Orsay's talk last meeting). Working on it
 - > May attempt Neural Networks implement new variables... (see K.Loureiro's talk)
- ♣If reducible backgrounds are still large we'll have to think. Re-summation effects cannot be neglected
 - \succ However, re-summation effect on P_{T} spectrum depends mainly on structure of color flow. Analogies may be used

Strategy for H-> my Analysis

- H+2jet (VBF) may be easily decoupled from the rest of the analyses
 - > Covers small fraction of phase space
- > Dominant systematic errors are of different nature
- Inclusive and H+1jet have lots of overlap
 - >However, H+1jet analysis takes up only 1/10 of the gg->l signal.
 - * This fraction may be reduced by tightening the cut on $M_{J\gamma\gamma}$.
 - >An optimization procedure need to be applied:
 - * Maximize combined significance of inclusive analysis (with M, and $P_{T\gamma\gamma}$ as discriminating variables) with H+1jet analysis by varying P_{TJ} and $M_{J\gamma\gamma}$. This may be achieved by ordering analyses in S/B

Strategy for H-> $\gamma\gamma$ Analysis (cont)

- ♣Inclusive and H+1jet have lots of overlap (cont)
 - >MC generation of signal and irreducible background may be done with one set of MC samples for the inclusive and H+1jet analyses
 - * Double counting may be avoided trivially by preventing the same event from being selected in two analyses
 - The situation with the reducible backgrounds is somewhat more complicated. Our approach will depend on how much better can we perform γ /jet separation
- \bot A back-of-the-envelope estimate of the combined signal significance for 30 fb⁻¹ with K factors: 7.4σ for M_H =115 GeV and 9.7σ M_H =130 GeV
 - > Have not used improvement from likelihood techniques nor multivariate analyses